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Abstract. The basic ingredients of a real-space tight-binding linear-muffin-tin orbital
(RS-TB-LMTO) approach to non-collinear magnetism and to torque-force calculations
of the magnetic anisotropy are described. Applications to face-centered-tetragonal Ni
films epitaxially grown on Cu(100) substrates are presented. The tetragonal distortion
of the films is calculated using an ab-initio local-density technique, and the RS-TB-
LMTO method is used for calculating the magnetic anisotropy in films with up to 7
Ni monolayers. The accuracy of the approach allows for a detailed analysis of second-
and fourth-order anisotropy constants.

1 Introduction

The tight-binding linear muffin-tin orbital method [1] has proven to be a very
efficient technique for investigating the electronic and magnetic properties of
complex materials, both in its reciprocal- and real-space forms. Exemplary ap-
plications include disordered alloys [2,3], metallic glasses [4] and quasicrystalline
alloys [5]. Of particular interest in the study of magnetism are systems where
the magnetically ordered ground state cannot be described as a simple ferro-,
antiferro-, or ferrimagnetic order with all moments aligned parallel or antipar-
allel to the global axis of magnetisation. In disordered systems the competition
between ferro- and antiferromagnetic exchange interactions and/or fluctuating
local anisotropies can lead to the formation of a non-collinear ground-state de-
scribable as a spin-glass, a spero-, speri-, or asperomagnet [6]. Non-collinear
magnetic structures can also arise as a consequence of uncompensated magnetic
interactions in ordered intermetallic compounds. The symmetry criteria for the
formation of non-collinear spin structures have been discussed in Ref. [7].

Techniques for solving the Kohn–Sham equations of local-spin-density theory
for a non-collinear magnet have been implemented in various standard electronic
structure codes: the augmented spherical wave (ASW) method [8], the LMTO
technique [9,10], and empirical tight-binding [11,12]. Applications include the
helical magnetic structures of γ−Fe [9,13] and of YMn2 [14], the non-collinear
magnetism in Mn3Sn [8], in metallic glasses [3], in quasicrystals [15] and in spin-
glasses [2], to cite only a few examples.

The possibility to tilt the magnetic moment at a given site with respect to its
equilibrium orientation opens the way to a calculation of Ising-, or Heisenberg-
type exchange pair interactions, allowing even for a calculation of bilinear and
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biquadratic exchange couplings [16,17]. If spin-orbit coupling is included in the
Hamiltonian, the magnetic anisotropy energy (MAE) can be calculated by a ma-
gnetic torque-force approach [18–20]. In both cases, the RS-TB-LMTO provides
sufficient convergence whereas k-space calculations converge only when extre-
mely fine grids are used for Brillouin-zone intergations [21,22]. In addition, they
have the potential to make the underlying physical mechanism more transparent
and to allow the investigation of even very complex systems.

In the present paper we first briefly review the fundamentals of the non-
collinear spin-polarised RS-TB-LMTO technique and describe its application to
the calculation of the magnetocrystalline anisotropy and to the exchange cou-
pling constants. In the second part we present detailed investigations of the
magnetic properties of the fcc Ni films epitaxially grown on Cu(001) surfaces.
The Ni/Cu(001) system is unique because of the re-entrant character of the
perpendicular magnetic anisotropy: with increasing film thickness, the magnetic
anisotropy switches from in-plane to perpendicular at a thickness of about 7
monolayers, retaining the orientation of the magnetic moments normal to the
film plane for a thickness of up to 60 rA [23,24]. In ”normal” system the equili-
brium between the spin-orbit driven anisotropy and the shape anisotropy leads
to a single transition from perpendicular to in-plane with an increasing num-
ber of monolayers. It is believed that the re-entrant behaviour of Ni/Cu(001)
films is largely strain-induced, driven by the lattice mismatch between film and
substrate.

2 TB-LMTO Approach and Real-Space Recursion
Formalism

Our approach to the self-consistent electronic-structure calculation is based on
the two-center TB-LMTO Hamiltonian

Hα
ils,i′l′s′ =

[1
2
δii′δll′(cαils + cαi′l′s′) +

√
dα

ilsS
α
il,i′l′

√
dα

i′l′s′

]
δss′ −

− 1
2
δii′δll′∆ilσ

z
ss′ = Hα,para

ils,i′l′s′ +Hα,exch
ils,i′l′s′ , (1)

expressed in terms of the structure constants Sα and the potential parameters cα,
dα which are evaluated in the screened most-localised representation [25]. The
potential parameters depend on the solution of the radial Schrödinger equation
at the energies εν chosen usually at the center of the occupied part of the bands.
Essentially, cα describes the center of gravity of the bands whereas dα measures
the band width. The matrix element given by Eq. (1) refers to the interaction
between atoms i, i′, orbitals l, l′ of the spin s, s′. The Pauli matrices will be
denoted as σx, σy and σz.

The first term in of Eq. (1) describes the non-magnetic part of the band
structure, the second spin-dependent term gives rise to the shifts of the bands
with different spins in the opposite directions. The shift is controlled by the
exchange splitting field
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∆il = cαil↓ − cαil↑ . (2)

Self-consistent calculations for various magnetic systems containing 3d- or
4d-metals reveal that the proportionality relation

∆il = Iilmil , (3)

between the exchange splitting field∆il and the magnetic momentmil is satisfied
very well for d-orbitals [4,26,27]. Therefore the non-selfconsistent studies based
on the TB-LMTO formalism can use a fixed Stoner parameter of I2 = 0.95
eV/µB as a very reasonable approximation.

Till now it was supposed that the magnetic moments are all aligned along
the z axis. The generalization of the presented approach to the treatment of
a non-collinear magnetic order consists in rewriting the exchange part of the
Hamiltonian (1) to a rotation invariant form

Hα,exch
ils,i′l′s′ = −1

2
δii′δll′∆ilσss′ = −1

2
δii′δll′Iil∆ilni.σss′ , (4)

where σ = σx x + σy y + σz z is the vector of the Pauli matrices with x, y,
z the unit vectors spanning a global coordinate space and ni = mi/|mi|. Each
magnetic moment direction defined by polar angles ϕi and ϑi with respect to
the global coordinate system defines the moments’ local coordinate system, in
which the exchange part of the Hamiltonian keeps the form of Eq. (1) but with
σz = σz

i referring to the local coordinate system. Because the paramagnetic part
of the Hamiltonian is constructed in the global coordinate system, the on-site
exchange part must be transformed correspondingly for each atom. Of course, the
opposite procedure of the transformation of the paramagnetic matrix elements,
namely the structure constants into the local bases would be equivalent. Taking
ni = cosϕi sinϑi x + sinϕi sinϑi y + cosϑi z we obtain for the transformed
exchange splitting field on the ith site

−1
2
Iil∆ilniσ = −1

2
Iil∆il

(
cosϑi sinϑi exp (−iϕi)

sinϑi exp (iϕi) − cosϑi

)

= −1
2
Iil∆ilD(ϕi, ϑi)σz

i D
+(ϕi, ϑi) . (5)

D(ϕi, ϑi) is the Wigner s = 1
2 rotation matrix from the local coordination

system to the global one
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The band-structure problem is solved using the real-space recursion method
[28], which is very efficient in combination with the TB-LMTO Hamiltonian.
Therefore complex systems with many degrees of freedom can be treated.

The determination of a non-collinear magnetic structure proceeds as follows.
In the first step the ground state of the collinear magnetic arrangement is found
for the Hamiltonian (1). The potential parameters cα, dα together with the Sto-
ner parameters Ii2 calculated from Eqs. (2) and (3) are used in the construction
of the Hamiltonian for the non-collinear calculation with the exchange part due
to Eq. (5), so that all the procedure is parameter-free. The starting magnetic mo-
ment vectors are distributed randomly or small random transversal components
are added to the magnetic moments resulting from previous collinear calculation.
Partial densities of states are obtained for the x-, y-, z-directions of a moment
in its local basis by choosing as the starting recursion vector the normalized
eigenvector of σx, σy, σz, respectively, for up and down spin directions. The
starting recursion vector is then rotated to the global coordinate system by mul-
tiplying it with D(ϕi, ϑi) from Eq. (6). In general, the new magnetic moments
obtained from the integrated projected densities of states will have transversal
components with respect to the last moment directions. The partial densities
of state along the direction of the magnetic moments are used in the update of
the charge densities, potential parameters and exchange splitting fields at each
step. The process continues in an iterative way until the transversal components
are sufficiently small. The moment rotations are quite slow during the iteration
process, therefore the new orientations are extrapolated from the old and new
directions and besides random noise components are added in order to avoid
running into nearest local minima. In the prediction of the new non-collinear
structure we use a Broyden mixing scheme [29]. For further technical details of
the non-collinear calculations we refer to the papers [10,19,30].

In some cases symmetry restrictions allow only a few special spin arrange-
ments in a system. Then the aim is to find a ground state spin configuration.
This kind of calculations can be done as described above but only the densities of
state projected along the moments are necessary what results in the much faster
calculation. To the group of models with fixed directions of magnetic moments
belongs a determination of the magnetic anisotropy energy.

2.1 Magnetocrystalline Anisotropy

The spin-orbit coupling responsible for the magnetocrystalline anisotropy can be
included into Hamiltonian given by Eq. (1) and Eq. (4) by adding an intra-atomic
term

Hso
ils,i′l′s′ =

1
2
δll′ξils,i′l′s′(E) (σl)ils,i′l′s′ . (7)

The matrix elements 1
2 (σl)ils,i′l′s′ for the d-orbitals in the frame rotated

to the magnetic moment direction can be found in Ref. [31]. The spin-orbit
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Table 1. Spin-orbit coupling parameters in meV for iron, cobalt and nickel calculated
at their experimental lattice constants for d-bands at the Fermi level EF and at the
middle of the occupied parts of the d-bands εν . The results obtained by LSDA exchange-
correlation potentials are compared with those obtained by GGA exchange-correlation
potentials (in parentheses).

ξd↑(EF ) ξd↓(EF ) ξd↑(εν) ξd↓(εν)

Fe 72(72) 56(55) 58(58) 45(45)

Co 94(94) 78(78) 73(74) 63(63)

Ni 109(111) 103(103) 91(88) 84(84)

parameters ξils,i′l′s′(E) are assumed to be non-negligible only between the d-
orbitals centered on the same site and they are given in Ry units [32] as

ξils,i′ls′(E) =
2
c2
δii′δll′

∫
φils(E, r)

dV (r)
dr

φi′l′s′(E, r)r2dr . (8)

Here c is the velocity of light, φils(E, r) are the radial partial waves calculated
at the energy E and V (r) is the one-electron interaction potential. The spin-orbit
coupling parameters obtained for iron, cobalt and nickel are shown in Table 1. We
have found that using the Barth-Hedin-Janak local-spin-density approximation
(LSDA) [33,34] and the generalised gradient approximation (GGA) [35] results
for the spin-orbit coupling differing less than 3 %.

Because the spin-orbit coupling constants are much smaller than the band
width for 3d-metals the magnetic anisotropy energy is often evaluated as a diffe-
rence of the sums of the single-particle eigenvalues for the opposite spin directions
treating the spin-orbit term (7) as a perturbation. Even then the calculations
in the k-space are very laborious [21]. Recently it has been demonstrated in
several papers that the real-space approach makes the task of the MAE estima-
tion possible in a non-perturbative fashion from the total ground state energies
[19,20,36]. From practical reasons the inclusion of the spin-orbit coupling in the
non-collinear calculations has the advantage of reducing somewhat the drift of
the overall magnetic moment in the course of the iteration process.

The determination of the preferential magnetisation orientation is of much
interest especially for thin magnetic films and multilayers, which possess a lowe-
red symmetry. However, in the layered systems the other significant contribution,
the magnetostatic shape anisotropy coming from the dipole-dipole interaction,
must be taken into account. Because the shape anisotropy always prefers the
in-plane magnetisation, it is responsible for the changing the orientation of the
magnetisation to the plane at some critical thickness if the spin-orbit contri-
bution to the MAE happens to support a perpendicular anisotropy. When the
thickness of the magnetic film is reduced to a few monolayers, the contributions
from all discrete dipole pairs have to be summed up explicitly
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Edip =
1
c2

∑
<i,j>

1
r3ij

(
mi.mj − 3

mi.rijmj .rij

r2ij

)
, (9)

rather than to resort to the continuum approximation. The sums appearing in
Eq. (9) converge slowly due to the long-range character of the dipole-dipole
interaction but they can be efficiently evaluated in the reciprocal space [37]. For
the cubic sc, bcc and fcc lattices with one atom type per layer the magnetostatic
dipolar energy can be expressed in Ry units as

Edip =
1

c2a3n2
2D

∑
<i,j>

mimj(cosϑi cosϑj −

−1
2
cos (ϕi − ϕj) sinϑi sinϑj)Mij , (10)

where n2D means a number of atoms in one layer, a is the lattice parameter of
the basic cubic cell and the Mij are the dipolar Madelung constants tabulated
in Table 2.

2.2 Exchange coupling constants

The modern spin-polarised band theory gives an accurate description of the ma-
gnetic ground state of most metals and alloys. The magnetic excitations from the
ground state are described in terms of various spin models in which the strength
of a pair interaction is controlled by a magnitude of the exchange coupling.

Recently we have derived expressions for the exchange pair coupling con-
stants and some other related quantities within a real-space approach [16]. The
exchange interaction between the ith and jth moments takes a form

Jij =
∆i∆j

2π
Im

∫ EF

Tr G↑↑
ij (E)G

↓↓
ji (E)dE , (11)

Table 2. Dipolar Madelung constants for the sc, bcc and fcc lattice geometries provided
the basic cubic cell of unit volume, z stands for the interlayer distance.

layer z sc bcc fcc

0 0 9.03362 9.03362 25.55094

1 1
2 — 4.17639 4.04301

2 1 -0.32746 -0.32746 -0.06402

3 3
2 — 0.01238 0.00072

4 2 -0.00055 -0.00055 0.00001
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where ∆ is the exchange splitting field defined by Eq. (2) and the off-site Green’s
functions Gss

ij (E) for the up and down spins are calculated by the recursion
method using the bonding and antibonding combinations for the sites i and j.

The mean-field estimation of the Curie temperature is related to the on-site
exchange coupling Jii via

TC,i =
1

3kB

(
1
2
∆imi − Jii

)
. (12)

The critical temperature TC,i should be viewed as a measure of the local stability
of the magnetic state of the ith atom surrounded by all other atoms.

Another quantity related to the exchange couplings and accessible to the
experimental verification is the spin-wave stiffness constant

Di =
∑

j

Jijr
2
ij . (13)

Here rij are the lattice vectors. The results for the nearest and the next nearest
exchange couplings, the Curie temperature and the stiffness constants for iron,
cobalt and nickel are presented in Table 3. The stiffness constant for iron was
calculated using the first 14 terms, for cobalt and for nickel the first 17 terms in
Eq. (13) were taken into account. The overall agreement with the experimental
data confirms that the spin models formulated originally for systems with loca-
lised magnetic moments can be still be used as a reasonable approximation for
itinerant magnets.

3 Ni/Cu(001) Films

3.1 Atomic Structure

Recently we have witnessed extensive experimental [24,42–47] and theoretical
investigations [48–50] of the Ni films grown on Cu. The Ni/(001)Cu system has
an average lattice mismatch of only 2.6 % favoring a coherent growth of Ni on

Table 3. The nearest and the next nearest exchange couplings J1, J2, the experimental
and the calculated values of Curie temperature TC and the spin-wave stiffness constant
D for iron, cobalt and nickel.

J1 (meV) J2 (meV) TC (K) T exp
C (K) D (meVrA2) Dexp (meVrA2)

Fe (bcc) 16.27 17.29 890 1044a 280 280b

Co (hcp) 25.05 4.11 1000 (β Co) 1388c 1900 580b

Ni (fcc) 4.62 0.20 290 627a 530 555d

a Ref. [38], b Ref. [39], c Ref. [40], d Ref. [41]
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Table 4. The relaxed atomic structures of films with one to seven Ni layers on Cu(001)
from first-principles calculations using the VASP package. The results are compared
with the available experimental data taken at room temperature.

ML 1 2 3 5 7 fct Ni

d12(%) -6.2 -7.0 -11.9 -2.4 -11.4 -3.5 -1.1 -10.8 1.6 -11.0 -11.1

d23(%) 0.2 -1.0 -1.9 -1.0 -7.4 -7.5 -3.9 -5.1 -6.1 -5.8 -6.2

d34(%) 0.5 -0.5 -3.2 0.4 -2.8 -5.8 -5.0 -5.9 -6.9

d45(%) 0.0 6.6 -1.1 -6.8 -5.6 -5.3 -7.0

d56(%) -1.2 -6.0

d67(%) 1.7 -6.2

d78(%) -0.7

d89(%) 3.0

Ref. [45] [45] [45] [46] [46]

Cu in an artificial tetragonally distorted face centered cubic (fct) structure up
to a thickness of about 40 layers above which the growth continues in the fcc
structure.

We investigated first the relaxation of films with one to seven Ni layers on
Cu(001) using the spin-polarised version of the Vienna ab-initio simulation pack-
age (VASP). A detailed description of the VASP and its algorithms can be found
in Ref. [51]. We used the Ceperley and Alder [52] local spin-density functional
and the generalised gradient approximation corrections [35] to the exchange-
correlation energy.

In the first step of the calculation the equilibrium lattice spacing of bulk Cu
was found 3.637 rA, in close agreement with the measured value 3.61 rA. Then
we performed a geometry optimisation of the Cu surface for a slab with 6 layers.
We found a 3.6 % inward relaxation of the surface layer. The predicted relaxation
agrees well with previous ab-initio calculations [53], but is somewhat lower than
the relaxation found in experiment (1.2 % in Ref. [54], 2.4 % in Ref. [55]). The
difference is mostly due to the fact that experiments have been performed at
room temperature. Afterwards the slab was extended on one side with 1 to 7
Ni layers and during the relaxation the lateral lattice spacing was kept at the
Cu bulk value. The inspection of the obtained layer relaxations summarised
in Table 4 reveals clear trends. The surface layer undergoes a strong inward
relaxation, the subsurface layers form a fct lattice with an axial ratio c/a ≈ 0.94.
The relaxation of the bulk fct Ni with the lattice spacing of the Cu bulk leads
to a tetragonal distortion of c/a ≈ 0.93. The rightmost column of Table 4 gives
the structure of the fct Ni surface modeled as a slab of eight layers. Again the
surface layer relaxes inward by a 11 % and the c/a ratio reaches the value 0.93
in the middle of the slab. The estimate within the continuum elasticity theory
of coherent epitaxy-induced structural changes gives c/a ≈ 0.965.
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Table 5. Magnetic moments in relaxed Ni/Cu(001) films with up to seven monolayers
of Ni and of fct Ni in µB . First two interface Cu layers are shown as well. The results
within RS-TB-LMTO approach can be compared with the moments obtained by VASP
package (right columns).

ML 1 2 3 5 7 fct Ni

1 0.12 0.38 0.76 0.75 0.78 0.74 0.77 0.74 0.74 0.73

2 0.00 0.01 0.48 0.52 0.55 0.59 0.58 0.68 0.58 0.68

3 -0.00 -0.01 -0.01 -0.01 0.50 0.47 0.69 0.71 0.68 0.69

4 -0.00 0.00 -0.01 0.00 0.62 0.69 0.64 0.68

5 -0.01 0.00 0.48 0.58 0.68 0.71

6 -0.01 0.01 0.64 0.70

7 -0.01 0.00 0.47 0.58

8 -0.01 -0.01

9 -0.01 -0.01

m̄ 0.12 0.38 0.62 0.63 0.61 0.60 0.63 0.68 0.63 0.68 0.66 0.61

For a single monolayer of Ni/Cu(001), the predicted relaxation is in very good
agreement with low-energy electron-diffraction (LEED) experiments by Kim et
al. [45]. For thicker layers, however, LEED experiments predict only a minimal
inward relaxation (and for yet thicker layers even an outward relaxation) of the
top layer [45,46], at an almost homogeneous tetragonal distortion of the deeper
part of the film. The first-principle calculations, on the other side predict a large
inward relaxation ot the toplayer, but agree with experiment concerning the
tetragonal distortion of the interior of the film.

Recent ab-initio calculations (based on the same technique) of the structu-
ral, electronic and magnetic properties of all low index surfaces of Ni [56] lead
to excellent agreement with experiment. Similar discrepancies between ab-initio
calculation and the experiment as those observed for Ni/Cu(001) have been re-
corded for a number of transition metal surfaces, e.g. Rh(001) and attributed to
an anomalously large perpendicular thermal expansion at the surface [57], limit-
ing the comparison between the room-temperature experiment and the T = 0 K
calculation. It must be left to the future work whether this mechanism also ex-
plains the discrepancy between calculations and experiment for the surface of
Ni/Cu(001) films.

3.2 Magnetic Structure

Using the relaxed atomic structural models discussed in the previous paragraph
we have calculated the magnetic structure and the magnetic anisotropy energy
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Table 6. Spin-orbit coupling parameters for up (left columns) and down (right co-
lumns) partial waves in the relaxed Ni/Cu(001) films with up to seven layers of Ni in
meV. The results for bulk fct Ni are shown in the right-most column.

ML 1 2 3 5 7 fct Ni

1 97.3 95.9 107.2 98.3 106.8 97.7 106.6 97.6 106.5 97.8

2 105.7 102.6 111.6 104.5 111.3 103.8 111.8 104.3

3 107.1 101.0 111.1 102.3 111.4 102.7

4 110.8 102.9 110.7 102.6

5 106.6 100.7 111.3 102.7

6 111.4 103.2

7 106.7 100.7

110.2 101.9

of the Ni/Cu(001) films within the framework of RS-TB-LMTO method. The
real-space recursion technique was applied to cells with 1944 atoms for 1 Ni
monolayer (ML) up to 2560 atoms for 7 Ni ML. Periodic boundary conditions in
the lateral directions and the free boundary conditions normal to the layers were
used. In all cases 20, 20, and 50 recursion levels were used for the s-, p-, d-orbitals,
respectively. Because for the thicker Ni films we obtained a systematic inward
relaxation 6 %, we studied also an infinite fct Ni crystal with the tetragonal
distortion c/a = 0.94.

The layer-resolved and the average magnetic moments are shown in Table
5. As can be expected, the moments at the surface are enhanced (except for the
monolayer) while the moments at the interface drop. This behaviour is observed
independent of the film thickness. Although the total average magnetic moment
approaches the bulk value gradually, even the system with 7 Ni ML is influenced
so strongly by the surface that it is not possible to identify a subsurface region
with steady bulk-like magnetic moments. We also note that the RS-TB-LMTO
calculations agree well with k-space results obtained using VASP.

Due to the relatively low Curie temperature of bulk Ni, the thin films of
Ni can be studied in a wide temperature range as a function of film thickness.
The comprehensive collection of experimental data establishes a clear picture
of magnetic anisotropies in Ni/Cu(001) films [24,43,44]. As the film thickness
increases the magnetisation changes its direction from [100] to [110] between 6
and 7 Ni ML and between 7 and 8 Ni ML it switches continuously to the [001]
direction. The surface and volume contributions to the second-order anisotropy
constants Ks

2 and Kv
2 at zero temperature lie between -100 up to -180 µeV/atom

and 40 up to 75 µeV/atom [44], respectively. The large error bars are due to
the uncertainty in the extrapolation down to zero temperature. For the fourth-
order in-plane and out-of-plane anisotropy constants very small values of K4‖ ≈
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−1 µeV/atom and K4⊥ ≈ 0.2 µeV/atom at T/Tc = 0.8 were reported for 7 Ni
ML [44].

We calculated MAE using the force theorem [21], treating the spin-orbit
coupling as a perturbation. As can be seen from Table 6 the spin-orbit coupling
parameters are only slightly affected by the surface and interface. The layer-
resolved and the total band and dipole-dipole contributions to the MAE are
compiled in Table 7. The contributions of the surface layer to the MAE in all
but monolayer films support an out-of-plane orientation of the magnetisation
and the magnitude of these contributions saturates with the film thickness. The
contribution of the Ni layer at the interface to the Cu substrate also prefers a
perpendicular orientation of the magnetic moments (except for the 2 ML film),
but does not show a systematic variation as the number of layers increases. Quite
surprisingly, we also find a large contribution from the subsurface layer and the
second Ni layer from interface, always preferring an in-plane orientation. The
contributions from the inner layers in films with ≥ 5 ML are always smaller than
the surface and interface contributions. As can be seen from Fig. 1, the 2 ML and
3 ML films show the perpendicular magnetic anisotropy, all other films we have
investigated have an easy axis in the plane. The spin-reorientation transition
between the 3 ML and 5 ML case is driven by the subsurface contribution to the
MAE. For the Ni monolayer we predictK2 = −263 µeV/atom in a fair agreement
with the measured value about −157 µeV/atom [43], previous calculations giving
−94 µeV/atom [48] or −690 µeV/atom [50]. For 2 Ni ML our result K2 =

1 2 3 4 5 6 7
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E
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Fig. 1. Calcutated total magnetic anisotropy energy (circles) and its dipole-dipole
(triangles) and band (squares) contributions for thin Ni films on Cu(001).
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Table 7. Spin-orbit (�Eb, left columns) and dipolar (�Ed, right columns) contribu-
tions to the magnetic anisotropy energy �E = E100 − E001 in the relaxed Ni/Cu(001)
films with up to seven Ni layers. In the last row the estimate of the fourth-order ani-
sotropy constant K4‖ = 4(E110 − E100) is given. The values for the layer-resolved
contributions are in µeV, the averaged values are in µeV/atom.

ML 1 2 3 5 7 fct Ni

1 -263 0 822 -14 1511 -15 2046 -15 2202 -14

2 -369 -7 -2112 -10 -1036 -11 -1049 -11

3 659 -6 355 -14 254 -13

4 -1870 -11 -641 -12

5 168 -6 -316 -13

6 -1330 -12

7 481 -6

�Ēb,d -263 0 227 -10 19 -10 -67 -11 -57 -12 52 0

�(Ēb + Ēd) -263 217 9 -78 -69 52

K4‖ -331 103 24 -17 -6 -3

227 µeV/atom compares very well with K2 = 300 µeV/atom obtained by Wu
and Freeman [50]. We note that the earlier calculations considered unrelaxed fct
or fcc lattices.

For an infinite fct Ni crystal with the tetragonal distortion c/a = 0.94 we
performed a series of calculations for models with different number of atoms.
We obtained almost the same values for the MAE 50, 54, 52 µeV/atom for cells
with 2048, 2916 and 6912 atoms, respectively. These values are only a bit lower
than results 60 µeV [49] and 65 µeV [50] found in the k-space calculations.

The decreasing negative values of the MAE for 5 and 7 ML, together with
the positive value for the infinite fct Ni indicate the possibility of an in-plane to
perpendicular reorientation at a thickness > 7 ML. However, it must be left to
future studies to locate this transition precisely.

The MAE for 2 Ni ML as a function of the tilt angle ϑ taken from the [001]
direction is shown in Fig 2. The dependence on cos2 ϑ is almost linear. Our
attempt to estimate the higher-order term yields a ratio between the fourth-
order and the second-order contribution of 0.01. Here and below we use for the
angular dependence of the MAE the expression [44]

E(ϕ, ϑ) = E0 −K2 cos2 ϑ− 1
2
K4⊥ cos4 ϑ− 1

8
K4‖(3 + cos 4ϕ) sin4 ϑ . (14)

Whether the reorientation of the magnetisation between the in-plane and out-
of-plane orientations happens continuously or abruptly depends on the sign of
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Fig. 2. Band energy difference plotted as a function of ϑ for 2 Ni ML films on Cu(001).
The solid line represents the fit by a parabola.

K4‖. For a stabilisation of a tilted magnetisation (and hence a continuous second
or higher order spin-reorientation transition) a negativeK4‖ is needed. The value
of the fourth-order in-plane anisotropy constant K4‖ can be obtained from the
variation of the MAE with cos 4ϕ. In the last row of Table 7 we show our results
for K4‖. It can be concluded that its thickness dependence is rather complex and
the K4‖ changes sign between 3 and 5 ML. Because these values are typically as
small as few µeV we carried out additional calculations for several intermediate
angles between 0 and 45◦ for 2, 3 and 7 ML films (Fig. 3). From the scatter of
the points around a linear fit versus cos 4ϕ we estimate that the confidence level
in the numerical accuracy of our approach is better than 0.3 µeV/atom in all
cases. Actually, the curves for 2 and 3 ML seem to be modulated systematically.
Despite of the exceedingly small values of the fourth-order MAE the calculated
values are in a reasonable agreement with experimentally observed trends.

In order to understand the influence of the surface and of the tetragonal
distortion of the films on the magnetic anisotropy, a correlation between the
number of holes in the Ni-d band (as observable in near-edge x-ray-absorption
fine-structure (NEXAFS) experiments) and possible anisotropy of the d-band
occupation has been evoked [47]. It has been argued that the number of holes in
the Ni-d band is strongly reduced in the thinnest films, converging to a bulk-like
value at a thickness of about 5 ML. In addition, an in-plane character of the
d-holes irrespective of the thickness has been reported.
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Fig. 3. Band energy difference plotted as a function of ϕ for 2, 3 and 7 Ni ML films
on Cu(001).

In Table 8 we present the number of 3d-holes (unoccupied states) separated
into holes in in-plane orbitals (xy, x2 − y2 for the (001) plane) and out-of-plane
orbitals (yz, zx and 3z2 − r2 for the (001) plane). It is obvious that the 3d-
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Table 8. Numbers of 3d-holes with the in-plane (d‖, left columns) and out-of-plane
(d⊥, right columns) symmetry for Ni atoms in one to seven Ni/Cu(001) films. The ratio
d̄‖/d̄⊥ determines the character of the holes (d̄‖/d̄⊥ > 2/3 means in-plane character,
d̄‖/d̄⊥ < 2/3 means out-of-plane character). The results for bulk fct Ni are shown in
the rightmost column.

ML 1 2 3 5 7 fct Ni

1 0.73 0.62 0.70 0.74 0.67 0.77 0.68 0.76 0.66 0.78

2 0.53 0.88 0.51 0.93 0.51 0.93 0.51 0.93

5 0.59 0.86 0.56 0.92 0.56 0.93

6 0.55 0.92 0.56 0.92

7 0.58 0.85 0.56 0.92

0.54 0.94

0.57 0.86

d̄‖,⊥ 0.73 0.62 0.61 0.81 0.59 0.85 0.58 0.88 0.57 0.90 0.55 0.91

d̄‖ + d̄⊥ 1.35 1.42 1.44 1.45 1.46 1.46

d̄‖/d̄⊥ 1.17 0.76 0.69 0.66 0.63 0.61

band filling is reduced progressively as the film thickness increases and at the
same time the hole character changes from the in-plane to out-of-plane between
4 and 5 Ni ML. The increase of the number of Ni holes with increasing film
thickness compares well with the experimental observations reported in Ref. [47].
In addition we find that the ratio d‖/d⊥ is enhanced in the surface layer over the
value d‖/d⊥ = 2/3 corresponding to an isotropic distribution of the 3d-holes.
Again this agrees with the conclusions derived from the NEXAFS experiments
where the anisotropy has been attributed to the tetragonal distortion of the films.
However, whether this conjecture is correct remains to be verified by reference
calculations for undistorted films. The in-plane character of the 3d-holes means
at the same time that the 3d-electrons have perpendicular character, and this
agrees with the positive contributions of the surface layers to the MAE. In the
deeper layers, the ratio d‖/d⊥ drops below 2/3 and is smallest in the subsurface
layer and the second layer from the interface. Again this correlates well with the
negative contributions to the MAE noted for these layers. Taking the average
over the entire film, we find that the hole character changes between 3 and
5 ML what correlates with the reversal of the MAE. Altogether this analysis
demonstrates that there are important changes in the partial electronic density
of states near the Fermi level as a function of the film thickness whose evident
correlations to the MAE deserve further investigation.
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4 Conclusions

The RS-TB-LMTO formalism described in the first part of the paper, together
with an ab-initio density functional approach to the reconstruction of the films,
has been applied to study the variation of the magnetic anisotropy of Ni/Cu(001)
films with increasing film thickness. The predicted tetragonal distortion of the
deeper layers agrees with experimental observations, but there is disagreement
concerning the obtained inward relaxation of the top layer – this is possibly
related to the confrontation of the T = 0 K calculations with room-temperature
experiments.

For the magnetic anisotropy, we predict a very complex behaviour: the change
from in-plane (1 ML) to perpendicular (2, 3 ML) back to in-plane(5, 7 ML) and
eventually again back to perpendicular for thicker layers (as long as the film re-
mains tetragonally distorted). A detailed analysis reveals a competition between
surface and interface contributions favouring a perpendicular orientation and
subsurface and subinterface contributions favouring in-plane orientation of the
magnetic moments. The correlations to a changing anisotropic population of the
Ni-3d bands have been investigated and found to agree with the interpretation
of NEXAFS experiments.
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14. Kübler, J., Sandratskii, L. M., Uhl, M., J. Magn. Magn. Mat. 104-107, 695 (1992).
15. Smirnov, A., V., Bratkovsky, A., M., Phys. Rev. B 53, 8515 (1996).
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